A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Have you met this question in a real interview?
Yes
Example
1,1 | 1,2 | 1,3 | 1,4 | 1,5 | 1,6 | 1,7 |
2,1 | ||||||
3,1 | 3,7 |
Above is a 3 x 7 grid. How many possible unique paths are there?
Note
m and n will be at most 100.
Dp:
求解得数目,走table, matrix dp
f[i][j] 为 从0,0走到i,j的路径数
转化方程 f[i][j]= f[i-1][j]+f[i][j-1]
解: f[m-1][n-1]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | class Solution { public: /** * @param n, m: positive integer (1 <= n ,m <= 100) * @return an integer */ int uniquePaths(int m, int n) { // wirte your code here vector<vector<int>> tbl(m, vector<int>(n,1)); for(int i=1; i<m; i++){ for (int j=1; j<n; j++){ tbl[i][j]=tbl[i-1][j]+tbl[i][j-1]; } } return tbl[m-1][n-1]; } }; |
No comments:
Post a Comment