Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
For example, given candidate set
A solution set is:
Have you met this question in a real interview? 2,3,6,7
and target 7
, A solution set is:
[7]
[2, 2, 3]
Yes
Example
given candidate set
A solution set is:
2,3,6,7
and target 7
, A solution set is:
[7]
[2, 2, 3]
Note
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
这基本算是回溯法的经典题目了,之前朋友面试碰到过类似的,就是给 1, 5, 10, 25的硬币,求有多少种组合可以组成一个给定的币值, 其实就是这个题目。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | class Solution { public: /** * @param candidates: A list of integers * @param target:An integer * @return: A list of lists of integers */ vector<vector<int> > combinationSum(vector<int> &candidates, int target) { // write your code here vector<vector<int>> result; vector<int> solution; sort(candidates.begin(), candidates.end()); helper(result, solution, candidates, 0, target); return result; } void helper(vector<vector<int>>& result, vector<int>& solution, vector<int>& candidates, int ind, int target){ if (target<0) return; if (target==0){ result.push_back(solution); return; } for (int i=ind; i<candidates.size(); i++){ solution.push_back(candidates[i]); helper(result,solution, candidates, i, target-candidates[i]); solution.pop_back(); } } }; |
No comments:
Post a Comment