Saturday, August 22, 2015

LintCode(137): Clone Graph

Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors.

OJ's undirected graph serialization:
Nodes are labeled uniquely.
We use # as a separator for each node, and , as a separator for node label and each neighbor of the node.
As an example, consider the serialized graph {0,1,2#1,2#2,2}.
The graph has a total of three nodes, and therefore contains three parts as separated by #.
  1. First node is labeled as 0. Connect node 0 to both nodes 1 and 2.
  2. Second node is labeled as 1. Connect node 1 to node 2.
  3. Third node is labeled as 2. Connect node 2 to node 2 (itself), thus forming a self-cycle.
Visually, the graph looks like the following:
       1
      / \
     /   \
    0 --- 2
         / \
         \_/

这个题目和linked list with random pointer 遍历差不多,先复制点,在复制边,

复制点的时候用一个hash table来避免循环, 用一个queue来实现广度优先, 为了第二次链接边的时候减小复杂度,维护一个vector来记录每一次被push进去的顺序,这要更新边的时候只需要遍历这个vector就好了。。。



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/**
 * Definition for undirected graph.
 * struct UndirectedGraphNode {
 *     int label;
 *     vector<UndirectedGraphNode *> neighbors;
 *     UndirectedGraphNode(int x) : label(x) {};
 * };
 */
class Solution {
public:
    /**
     * @param node: A undirected graph node
     * @return: A undirected graph node
     */
    typedef UndirectedGraphNode n;
    UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
        // write your code here
        if (!node)
            return node;
        vector<n*> seq;
        unordered_map<n*, n*> map;
        queue<n*> q;
        q.push(node);
        seq.push_back(node);
        map[node] = new n(node->label);
        while(!q.empty()){
            n* tmp= q.front();
            q.pop();
            for (int i=0; i<tmp->neighbors.size(); i++){
                n* sub=tmp->neighbors[i];
                if (map.find(sub)!=map.end())
                    continue;
                map[sub] = new n(sub->label);
                q.push(sub);
                seq.push_back(sub);
            }
        }
        
        for (int i=0; i<seq.size(); i++){
            n* tmp=seq[i];
            for (int j=0; j<tmp->neighbors.size(); j++){
                map[tmp]->neighbors.push_back(map[tmp->neighbors[j]]);
            }
        }
        return map[node];
    }
};

No comments:

Post a Comment